Los agujeros negros

Los agujeros negros
La idea de agujero negro está directamente relacionada con la ley de la gravitación universal que propuso Isaac Newton en el siglo XVII, en la cual se establecía que un objeto con cierta masa ejerce una fuerza atractiva sobre otros objetos, cuya intensidad es inversamente proporcional al cuadrado de la distancia. Así, la fuerza gravitatoria aumenta a medida que la distancia al atrayente (con una masa dada) disminuye. Aunque la gravedad de un planeta o una estrella  cerca de su superficie es importante, los objetos pueden contrarrestar dicha atracción y escapar si disponen de suficiente energía. Por ejemplo, la velocidad de escape desde la superficie terrestre es de unos 11 kilómetros por segundo, mientras que se necesita una velocidad de 617 kilómetros por segundo para escapar de una estrella como el Sol. Nosotros sabemos que la radiación (y las partículas más energéticas) no pueden ser capturadas por el campo gravitatorio solar, ya que la luz visible que proviene del Sol (velocidad de 300000 kilómetros por segundo) ilumina el cielo diurno.

Sin embargo, si un objeto colapsa hasta introducirse dentro de un radio extremadamente pequeño, en el cual la velocidad de escape es igual a la velocidad de la luz, se forma un agujero negro. La materia y la radiación quedan atrapadas en su campo gravitatorio, y no son capaces de propagarse hasta otras regiones vecinas. Dicho radio crítico suele definir el tamaño del agujero negro, aunque más que un tamaño real es una frontera, en cuyo interior se ha formado la mencionada  estructura compacta y oscura. El radio crítico (o tamaño radial) es directamente proporcional a la masa, y es de unos 3 kilómetros para la masa del Sol, y de solo 9 milímetros para la masa de la Tierra. En otras palabras, para transformar la Tierra en un agujero negro, necesitaríamos comprimir toda su masa en un volumen menor que el de un ojo humano.

Desde un punto de vista teórico, se especula con la posible existencia de agujeros negros primordiales, formados mediante fluctuaciones locales en la densidad de materia durante la expansión inicial del Universo. Se trataría de objetos poco masivos y exóticos, que pueden tener escapes a través de sus fronteras (radiación de Hawking), de forma que no se comportarían como cárceles totalmente eficientes para la materia y la radiación. Estos escapes estarían relacionados con efectos cuánticos, y generarían una disminución paulatina de su masa hasta la evaporación de los mismos. En los últimos años, Stephen Hawking también ha postulado que la materia y la radiación no colapsan dentro de la esfera con el radio crítico del agujero negro, ya que quedarían atrapadas temporalmente en la frontera definida por dicho radio crítico. Dejando a un lado estas y otras muchas especulaciones teóricas, la astronomía moderna está dedicando un gran esfuerzo al descubrimiento y estudio de agujeros negros con diferentes masas. Aunque llegados a este punto, surge una pregunta evidente: ¿cómo encontrar un objeto que no emite luz en el cielo nocturno?, ¿hacia dónde orientar nuestros telescopios?

De forma genérica, un agujero negro es una región del cielo con condiciones físicas extremas. No solamente el campo gravitatorio es extremadamente intenso, haciendo necesario el uso de la teoría de la relatividad general para su descripción, sino que también se espera que su velocidad de rotación y su campo magnético sean extraordinariamente  grandes. Si imaginamos un objeto aislado con masa estelar que colapsa conservando su momento angular y su masa,  a medida que el radio se reduce, la velocidad de rotación debe aumentar para compensar la disminución de tamaño. De forma similar, si se conserva el flujo magnético, el colapso conduce a un aumento del campo magnético. Estas ideas generales se confirman cuando se comparan las propiedades de estrellas colapsadas de neutrones (púlsares con una radio de unos 10 kilómetros) y estrellas normales. Las estrellas de neutrones pueden alcanzar velocidades de rotación próximas a 100000 kilómetros por segundo, y albergar campos magnéticos de un billón de Gauss. Por consiguiente, en las inmediaciones de un objeto compacto (estrella de neutrones o agujero negro) podemos encontrar un disco de gas caliente: gas capturado por su enorme campo gravitatorio, distribuido en el plano perpendicular al eje de rotación, y calentado por la fricción entre regiones adyacentes del disco. Dicho gas caliente emitirá radiación térmica. También se puede emitir radiación no térmica, cuando partículas cargadas son aceleradas por campos eléctricos y magnéticos en las cercanías de la estructura colapsada.

Publicar un comentario

Artículo Anterior Artículo Siguiente